热度 1|
% mallet_wavelet.m
% 此函数用于研究Mallet算法及滤波器设计
% 此函数用于消噪处理
%角度赋值
%此处赋值使滤波器系数恰为db9
%分解的高频系数采用db9较好,即它的消失矩较大
%分解的有用信号小波高频系数基本趋于零
%对于噪声信号高频分解系数很大,便于阈值消噪处理
[l,h]=wfilters('db10','d');
low_construct=l;
L_fre=20; %滤波器长度
low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器
for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器
if(mod(i_high,2)==0);
coefficient=-1;
else
coefficient=1;
end
high_construct(1,i_high)=low_decompose(1,i_high)*coefficient;
end
high_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n)
L_signal=100; %信号长度
n=1:L_signal; %原始信号赋值
f=10;
t=0.001;
y=10*cos(2*pi*50*n*t).*exp(-30*n*t);
zero1=zeros(1,60); %信号加噪声信号产生
zero2=zeros(1,30);
noise=[zero1,3*(randn(1,10)-0.5),zero2];
y_noise=y+noise;
figure(1);
subplot(2,1,1);
plot(y);
title('原信号');
subplot(2,1,2);
plot(y_noise);
title('受噪声污染的信号');
check1=sum(high_decompose); %h0(n),性质校验
check2=sum(low_decompose);
check3=norm(high_decompose);
check4=norm(low_decompose);
l_fre=conv(y_noise,low_decompose); %卷积
l_fre_down=dyaddown(l_fre); %抽取,得低频细节
h_fre=conv(y_noise,high_decompose);
h_fre_down=dyaddown(h_fre); %信号高频细节
figure(2);
subplot(2,1,1)
plot(l_fre_down);
title('小波分解的低频系数');
subplot(2,1,2);
plot(h_fre_down);
title('小波分解的高频系数');
% 消噪处理
for i_decrease=31:44;
if abs(h_fre_down(1,i_decrease))>=0.000001
h_fre_down(1,i_decrease)=(10^-7);
end
end
l_fre_pull=dyadup(l_fre_down); %0差值
h_fre_pull=dyadup(h_fre_down);
l_fre_denoise=conv(low_construct,l_fre_pull);
h_fre_denoise=conv(high_construct,h_fre_pull);
l_fre_keep=wkeep(l_fre_denoise,L_signal); %取结果的中心部分,消除卷积影响
h_fre_keep=wkeep(h_fre_denoise,L_signal);
sig_denoise=l_fre_keep+h_fre_keep; %消噪后信号重构
%平滑处理
for j=1:2
for i=60:70;
sig_denoise(i)=sig_denoise(i-2)+sig_denoise(i+2)/2;
end;
end;
compare=sig_denoise-y; %与原信号比较
figure(3);
subplot(3,1,1)
plot(y);
ylabel('y'); %原信号
subplot(3,1,2);
plot(sig_denoise);
ylabel('sig\_denoise'); %消噪后信号
subplot(3,1,3);
plot(compare);
ylabel('compare'); %原信号与消噪后信号的比较
小波谱分析mallat算法经典程序
复制内容到剪贴板代码:clc;clear;
%% 1.正弦波定义
f1=50; % 频率1
f2=100; % 频率2
fs=2*(f1+f2); % 采样频率
Ts=1/fs; % 采样间隔
N=120; % 采样点数
n=1:N;
y=sin(2*pi*f1*n*Ts)+sin(2*pi*f2*n*Ts); % 正弦波混合
figure(1)
plot(y);
title('两个正弦信号')
figure(2)
stem(abs(fft(y)));
title('两信号频谱')
%% 2.小波滤波器谱分析
h=wfilters('db30','l'); % 低通
g=wfilters('db30','h'); % 高通
h=[h,zeros(1,N-length(h))]; % 补零(圆周卷积,且增大分辨率变于观察)
g=[g,zeros(1,N-length(g))]; % 补零(圆周卷积,且增大分辨率变于观察)
figure(3);
stem(abs(fft(h)));
title('低通滤波器图')
figure(4);
stem(abs(fft(g)));
title('高通滤波器图')
%% 3.MALLET分解算法(圆周卷积的快速傅里叶变换实现)
sig1=ifft(fft(y).*fft(h)); % 低通(低频分量)
sig2=ifft(fft(y).*fft(g)); % 高通(高频分量)
figure(5); % 信号图
subplot(2,1,1)
plot(real(sig1));
title('分解信号1')
subplot(2,1,2)
plot(real(sig2));
title('分解信号2')
figure(6); % 频谱图
subplot(2,1,1)
stem(abs(fft(sig1)));
title('分解信号1频谱')
subplot(2,1,2)
stem(abs(fft(sig2)));
title('分解信号2频谱')
%% 4.MALLET重构算法
sig1=dyaddown(sig1); % 2抽取
sig2=dyaddown(sig2); % 2抽取
sig1=dyadup(sig1); % 2插值
sig2=dyadup(sig2); % 2插值
sig1=sig1(1,[1:N]); % 去掉最后一个零
sig2=sig2(1,[1:N]); % 去掉最后一个零
hr=h(end:-1:1); % 重构低通
gr=g(end:-1:1); % 重构高通
hr=circshift(hr',1)'; % 位置调整圆周右移一位
gr=circshift(gr',1)'; % 位置调整圆周右移一位
sig1=ifft(fft(hr).*fft(sig1)); % 低频
sig2=ifft(fft(gr).*fft(sig2)); % 高频
sig=sig1+sig2; % 源信号
%% 5.比较
figure(7);
subplot(2,1,1)
plot(real(sig1));
title('重构低频信号');
subplot(2,1,2)
plot(real(sig2));
title('重构高频信号');
figure(8);
subplot(2,1,1)
stem(abs(fft(sig1)));
title('重构低频信号频谱');
subplot(2,1,2)
stem(abs(fft(sig2)));
title('重构高频信号频谱');
figure(9)
plot(real(sig),'r','linewidth',2);
hold on;
plot(y);
legend('重构信号','原始信号')
title('重构信号与原始信号比较')2维小波变换经典程序复制内容到剪贴板代码:% FWT_DB.M;
% 此示意程序用DWT实现二维小波变换
% 编程时间2004-4-10,编程人沙威
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;clc;
T=256; % 图像维数
SUB_T=T/2; % 子图维数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1.调原始图像矩阵
load wbarb; % 下载图像
f=X; % 原始图像
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 2.进行二维小波分解
l=wfilters('db10','l'); % db10(消失矩为10)低通分解滤波器冲击响应(长度为20)
L=T-length(l);
l_zeros=[l,zeros(1,L)]; % 矩阵行数与输入图像一致,为2的整数幂
h=wfilters('db10','h'); % db10(消失矩为10)高通分解滤波器冲击响应(长度为20)
h_zeros=[h,zeros(1,L)]; % 矩阵行数与输入图像一致,为2的整数幂
for i=1:T; % 列变换
row(1:SUB_T,i)=dyaddown( ifft( fft(l_zeros).*fft(f(:,i)') ) ).'; % 圆周卷积<->FFT
row(SUB_T+1:T,i)=dyaddown( ifft( fft(h_zeros).*fft(f(:,i)') ) ).'; % 圆周卷积<->FFT
end;
for j=1:T; % 行变换
line(j,1:SUB_T)=dyaddown( ifft( fft(l_zeros).*fft(row(j,:)) ) ); % 圆周卷积<->FFT
line(j,SUB_T+1:T)=dyaddown( ifft( fft(h_zeros).*fft(row(j,:)) ) ); % 圆周卷积<->FFT
end;
decompose_pic=line; % 分解矩阵
% 图像分为四块
lt_pic=decompose_pic(1:SUB_T,1:SUB_T); % 在矩阵左上方为低频分量--fi(x)*fi(y)
rt_pic=decompose_pic(1:SUB_T,SUB_T+1:T); % 矩阵右上为--fi(x)*psi(y)
lb_pic=decompose_pic(SUB_T+1:T,1:SUB_T); % 矩阵左下为--psi(x)*fi(y)
rb_pic=decompose_pic(SUB_T+1:T,SUB_T+1:T); % 右下方为高频分量--psi(x)*psi(y)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 3.分解结果显示
figure(1);
colormap(map);
subplot(2,1,1);
image(f); % 原始图像
title('original pic');
subplot(2,1,2);
image(abs(decompose_pic)); % 分解后图像
title('decomposed pic');
figure(2);
colormap(map);
subplot(2,2,1);
image(abs(lt_pic)); % 左上方为低频分量--fi(x)*fi(y)
title('\Phi(x)*\Phi(y)');
subplot(2,2,2);
image(abs(rt_pic)); % 矩阵右上为--fi(x)*psi(y)
title('\Phi(x)*\Psi(y)');
subplot(2,2,3);
image(abs(lb_pic)); % 矩阵左下为--psi(x)*fi(y)
title('\Psi(x)*\Phi(y)');
subplot(2,2,4);
image(abs(rb_pic)); % 右下方为高频分量--psi(x)*psi(y)
title('\Psi(x)*\Psi(y)');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 5.重构源图像及结果显示
% construct_pic=decompose_matrix'*decompose_pic*decompose_matrix;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
l_re=l_zeros(end:-1:1); % 重构低通滤波
l_r=circshift(l_re',1)'; % 位置调整
h_re=h_zeros(end:-1:1); % 重构高通滤波
h_r=circshift(h_re',1)'; % 位置调整
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
top_pic=[lt_pic,rt_pic]; % 图像上半部分
t=0;
for i=1:T; % 行插值低频
if (mod(i,2)==0)
topll(i,:)=top_pic(t,:); % 偶数行保持
else
t=t+1;
topll(i,:)=zeros(1,T); % 奇数行为零
end
end;
for i=1:T; % 列变换
topcl_re(:,i)=ifft( fft(l_r).*fft(topll(:,i)') )'; % 圆周卷积<->FFT
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bottom_pic=[lb_pic,rb_pic]; % 图像下半部分
t=0;
for i=1:T; % 行插值高频
if (mod(i,2)==0)
bottomlh(i,:)=bottom_pic(t,:); % 偶数行保持
else
bottomlh(i,:)=zeros(1,T); % 奇数行为零
t=t+1;
end
end;
for i=1:T; % 列变换
bottomch_re(:,i)=ifft( fft(h_r).*fft(bottomlh(:,i)') )'; % 圆周卷积<->FFT
end;
construct1=bottomch_re+topcl_re; % 列变换重构完毕
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
left_pic=construct1(:,1:SUB_T); % 图像左半部分
t=0;
for i=1:T; % 列插值低频
if (mod(i,2)==0)
leftll(:,i)=left_pic(:,t); % 偶数列保持
else
t=t+1;
leftll(:,i)=zeros(T,1); % 奇数列为零
end
end;
for i=1:T; % 行变换
leftcl_re(i,:)=ifft( fft(l_r).*fft(leftll(i,:)) ); % 圆周卷积<->FFT
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
right_pic=construct1(:,SUB_T+1:T); % 图像右半部分
t=0;
for i=1:T; % 列插值高频
if (mod(i,2)==0)
rightlh(:,i)=right_pic(:,t); % 偶数列保持
else
rightlh(:,i)=zeros(T,1); % 奇数列为零
t=t+1;
end
end;
for i=1:T; % 行变换
rightch_re(i,:)=ifft( fft(h_r).*fft(rightlh(i,:)) ); % 圆周卷积<->FFT
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
construct_pic=rightch_re+leftcl_re; % 重建全部图像
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 结果显示
figure(3);
colormap(map);
subplot(2,1,1);
image(f); % 源图像显示
title('original pic');
subplot(2,1,2);
image(abs(construct_pic)); % 重构源图像显示
title('reconstructed pic');
error=abs(construct_pic-f); % 重构图形与原始图像误值
figure(4);
mesh(error); % 误差三维图像
title('absolute error display');小波插值与小波构造(3个程序)复制内容到剪贴板代码:%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 小波构造 function casade
clear;clc;
t=3;
phi=[0,1,0]; h=wfilters('db7','r');
h=h*sqrt(2); h_e=h(1,[2:2:14]);
h_o=h(1,[1:2:13]); for m=1:15;
stem(phi);
drawnow;
pause(1);
ee=conv(h_e,phi);
oo=conv(h_o,phi);
phi(1,[2:2:2*length(ee)])=ee;
phi(1,[1:2:2*length(oo)-1])=oo;
end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% cubic_average(立方b样条)
% 均值插值 % 初始化
s=[0 0 1 0 0] % 正弦波
% f=50;
% ts=1/200;
% n=0:16;
% s=sin(2*pi*f*n*ts); % 系数
se=[1/8,6/8,1/8];
so=[4/8,4/8] % 循环
for p=1:10;
t=length(s)-1;
o(1:t)=s(1:t)*so(1)+s(2:t+1)*so(2);
e(1)=s(t+1)*se(1)+s(1)*se(2)+s(2)*se(3);
e(2:t)=s(1:t-1)*se(1)+s(2:t)*se(2)+s(3:t+1)*se(3);
e(t+1)=s(t)*se(1)+s(t+1)*se(2)+s(1)*se(3);
s([1:2:2*t+1])=e([1:t+1]);
s([2:2:2*t])=o([1:t]);
plot(s);
drawnow;
end; % 抽取
t=length(s); % 总长度
p=128; % 需要点数 % 间隔
d=(t-1)/p; % 最终尺度函数
r=s(2:d:t-1); % 画图
figure(2);
plot(r);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% cubic_subdivision(立方插值)
% 细分插值 % %% 初始化(尺度函数)
% s=[0,0,1,0,0]; % 正弦函数
n=1:20;
f=50;
ts=1/200;
s=sin(2*pi*f*n*ts); % 指数函数
% n=0:16;
% s=exp(n); % % 系数
a=[-1/16,9/16,9/16,-1/16]; % 循环
for p=1:4;
t=length(s)-1;
o(1)=s(4)*a(1)+s(1)*a(2)+s(2)*a(3)+s(3)*a(4);
o(2:t-1)=s(1:t-2)*a(1)+s(2:t-1)*a(2)+s(3:t)*a(3)+s(4:t+1)*a(4);
o(t)=s(t-2)*a(4)+s(t+1)*a(3)+s(t)*a(2)+s(t-1)*a(1);
s([1:2:2*t+1])=s([1:t+1]);
s([2:2:2*t])=o([1:t]);
plot(s);
drawnow;
end; % % 抽取
% t=length(s); % 总长度
% p=128; % 需要点数
%
% % 间隔
% d=(t-1)/p;
%
% % 最终尺度函数
% r=s(2:d:t-1);
%
% % 画图
% figure(2);
% plot(r);采用多孔trous算法(undecimated wavelet transform)实现小波变换复制内容到剪贴板代码:clear;clc;
% 1.生成信号
f=50; % 频率
fs=800; % 采样率
T=128; % 信号长度
n=1:T;
y=sin(2*pi*f*n/fs)+2*exp(-f*n/(4*fs)); % 信号
% y=circshift(y.',3).'; %%
2.正变换 l1=wfilters('db4','l')*sqrt(2)/2;
% 参考低通滤波器
l1_zeros=[l1,zeros(1,T-length(l1))]; % 低通滤波器1
h1=wfilters('db4','h')*sqrt(2)/2; % 参考高通滤波器
h1_zeros=[h1,zeros(1,T-length(h1))]; % 高通滤波器1 low1=ifft(fft(y).*fft(l1_zeros)); % 低频分量1
high1=ifft(fft(y).*fft(h1_zeros)); % 高频分量1 l2=dyadup(l1); % 原滤波器插值
l2_zeros=[l2,zeros(1,T-length(l2))]; % 低通滤波器2
h2=dyadup(h1); % 原滤波器插值
h2_zeros=[h2,zeros(1,T-length(h2))]; % 高通滤波器2 low2=ifft(fft(low1).*fft(l2_zeros)); % 低频分量2
high2=ifft(fft(low1).*fft(h2_zeros)); % 高频分量2
%% 3.反变换 lr2=circshift(l2_zeros(end:-1:1).',1).'; % 重构低通滤波器2
hr2=circshift(h2_zeros(end:-1:1).',1).'; % 重构高通滤波器2
lr1=circshift(l1_zeros(end:-1:1).',1).'; % 重构低通滤波器1
hr1=circshift(h1_zeros(end:-1:1).',1).'; % 重构高通滤波器1 lowr=(ifft(fft(low2).*fft(lr2))+ifft(fft(high2).*fft(hr2))); % 重构低频分量1(lowr=low1)
r_s=(ifft(fft(lowr).*fft(lr1))+ifft(fft(high1).*fft(hr1))); % 重构源信号(r_s=y)
%% 4.绘图 figure(1);
plot(y);
title('源信号'); figure(2);
plot(low1,'r');
hold on;
plot(low2,'b');
legend('第一层低频','第二层低频'); figure(3);
plot(high1,'r');
hold on;
plot(high2,'b');
legend('第一层高频','第二层高频'); figure(4);
plot(low1,'r');
hold on;
plot(lowr,'b.');
legend('第一层低频','重构第一层低频'); figure(5);
plot(y,'r');
hold on;
plot(r_s,'b.');
legend('源信号','重构信号'); disp(norm(low1-lowr))
disp(norm(y-r_s))此程序实现构造小波基复制内容到剪贴板代码:% 此程序实现构造小波基
% periodic_wavelet.m function ss=periodic_wavelet; clear;clc; % global MOMENT; % 消失矩阶数
% global LEFT_SCALET; % 尺度函数左支撑区间
% global RIGHT_SCALET; % 尺度函数右支撑区间
% global LEFT_BASIS; % 小波基函数左支撑区间
% global RIGHT_BASIS; % 小波基函数右支撑区间
% global MIN_STEP; % 最小离散步长
% global LEVEL; % 计算需要的层数(离散精度)
% global MAX_LEVEL; % 周期小波最大计算层数
[s2,h]=scale_integer;
[test,h]=scalet_stretch(s2,h);
wave_base=wavelet(test,h);
ss=periodic_waveletbasis(wave_base);
function [s2,h]=scale_integer; % 本函数实现求解小波尺度函数离散整数点的值
% sacle_integer.m MOMENT=10; % 消失矩阶数
LEFT_SCALET=0; % 尺度函数左支撑区间
RIGHT_SCALET=2*MOMENT-1; % 尺度函数右支撑区间
LEFT_BASIS=1-MOMENT; % 小波基函数左支撑区间
RIGHT_BASIS=MOMENT; % 小波基函数右支撑区间
MIN_STEP=1/512; % 最小离散步长
LEVEL=-log2(MIN_STEP); % 计算需要的层数(离散精度)
MAX_LEVEL=8; % 周期小波最大计算层数
h=wfilters('db10','r'); % 滤波器系数 h=h*sqrt(2); % FI(T)=SQRT(2)*SUM(H(N)*FI(2T-N)) N=0:2*MOMENT-1; for i=LEFT_SCALET+1:RIGHT_SCALET-1
for j=LEFT_SCALET+1:RIGHT_SCALET-1
k=2*i-j+1;
if (k>=1&k<=RIGHT_SCALET+1)
a(i,j)=h(k); % 矩阵系数矩阵
else
a(i,j)=0;
end
end
end [s,w]=eig(a); % 求特征向量,解的基
s1=s(:,1);
s2=[0;s1/sum(s1);0]; % 根据条件SUM(FI(T))=1,求解; % 本函数实现尺度函数经伸缩后的离散值
% scalet_stretch.m function [s2,h]=scalet_stretch(s2,h); MOMENT=10; % 消失矩阶数
LEFT_SCALET=0; % 尺度函数左支撑区间
RIGHT_SCALET=2*MOMENT-1; % 尺度函数右支撑区间
LEFT_BASIS=1-MOMENT; % 小波基函数左支撑区间
RIGHT_BASIS=MOMENT; % 小波基函数右支撑区间
MIN_STEP=1/512; % 最小离散步长
LEVEL=-log2(MIN_STEP); % 计算需要的层数(离散精度)
MAX_LEVEL=8; % 周期小波最大计算层数
for j=1:LEVEL % 需要计算到尺度函数的层数
t=0;
for i=1:2:2*length(s2)-3 % 需要计算的离散点取值(0,1,2,3 -> 1/2, 3/2, 5/2)
t=t+1;
fi(t)=0;
for n=LEFT_SCALET:RIGHT_SCALET; % 低通滤波器冲击响应紧支撑判断
if ((i/2^(j-1)-n)>=LEFT_SCALET&(i/2^(j-1)-n)<=RIGHT_SCALET) % 小波尺度函数紧支撑判断
fi(t)=fi(t)+h(n+1)*s2(i-n*2^(j-1)+1); % 反复应用双尺度方程求解
end
end
end
clear s
n1=length(s2);
n2=length(fi);
for i=1:length(s2)+length(fi) % 变换后的矩阵长度
if (mod(i,2)==1)
s(i)=s2((i+1)/2); % 矩阵奇数下标为小波上一层(0,1,2,3)离散值
else
s(i)=fi(i/2); % 矩阵偶数下标为小波下一层(1/2,3/2,5/2)(经过伸缩变换后)的离散值
end
end
s2=s;
end
% 采用双尺度方程求解小波基函数 PSI(T)
% wavelet.m function wave_base=wavelet(test,h); MOMENT=10; % 消失矩阶数
LEFT_SCALET=0; % 尺度函数左支撑区间
RIGHT_SCALET=2*MOMENT-1; % 尺度函数右支撑区间
LEFT_BASIS=1-MOMENT; % 小波基函数左支撑区间
RIGHT_BASIS=MOMENT; % 小波基函数右支撑区间
MIN_STEP=1/512; % 最小离散步长
LEVEL=-log2(MIN_STEP); % 计算需要的层数(离散精度)
MAX_LEVEL=8; % 周期小波最大计算层数
i=0;
for t=LEFT_BASIS:MIN_STEP:RIGHT_BASIS; % 小波基支撑长度
s=0;
for n=1-RIGHT_SCALET:1-LEFT_SCALET % g(n)取值范围
if((2*t-n)>=LEFT_SCALET&(2*t-n)<=RIGHT_SCALET) % 尺度函数判断
s=s+h(1-n+1)*(-1)^(n)*test((2*t-n)/MIN_STEP+1); % 计算任意精度的小波基函数值
end
end
i=i+1;
wave_base(i)=s;
end消失矩作用的程序复制内容到剪贴板代码:clear;clc;
f=50;
T=0.001;
n=1:50;
y=sin(2*pi*f*n*T);
noise=[zeros(1,17),0.2*randn(1,15),zeros(1,18)];
y_noise=y+noise;
figure(1);
subplot(2,1,1);
plot(y);
title('signal');
subplot(2,1,2);
plot(y_noise);
title('noise & signal');
[yl2,yh2]=dwt(y,'db2');
[yl10,yh10]=dwt(y,'db10');
figure(2);
subplot(2,1,1);
plot(yl2);
title('db2 low frequency signal');
subplot(2,1,2);
plot(yh2);
title('db2 high frequency signal');
figure(3);
subplot(2,1,1);
plot(yl10);
title('db10 low frequency signal');
subplot(2,1,2);
plot(yh10);
title('db10 high frequency signal');
[yl2,yh2]=dwt(y_noise,'db2');
[yl10,yh10]=dwt(y_noise,'db10');
figure(4);
subplot(2,1,1);
plot(yl2);
title('db2 low frequency noise & signal');
subplot(2,1,2);
plot(yh2);
title('db2 high frequency noise & signal');
figure(5);
subplot(2,1,1);
plot(yl10);
title('db10 low frequency noise & signal');
subplot(2,1,2);
plot(yh10);
title('db10 high frequency noise & signal');平移变换平移法(cycle_spinning)消除gibbs效应复制内容到剪贴板代码:clear;
clc; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 1.原始信号 f=50; % 信号频率
fs=800; % 采样频率
N=128; % 采样点 % 信号赋值
n=1:N;
y=sin(2*pi*f*n/fs); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 2.噪声
noise=0.4*rand(1,128); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 3.染噪信号
y_noise=y+noise; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 4.硬消噪采用cycle_spinning技术 % 累加量
z5=zeros(1,N); % 平移变换频移法
for i=1:N;
z=circshift(y_noise.',i-1).'; % 源信号右平移
[z1,z2]=lwt(z,'db3'); % 小波正变换
z2=zeros(1,N/2); % 高频分量全部为零(主要噪声,硬消噪)
z3=ilwt(z1,z2,'db3'); % 小波反变换
z4=circshift(z3.',-(i-1)).'; % 变换后信号左平移
z5=z5+z4/N; % 平均
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 5.显示 error=norm(y-z5)/norm(y); % 相对误差 figure(1);
subplot(2,1,1)
plot(y,'r');
legend('源信号');
subplot(2,1,2);
plot(y_noise);
legend('染噪信号');
figure(2);
subplot(2,1,1)
plot(y,'r');
legend('源信号');
title(error);
subplot(2,1,2);
plot(z5);
legend('消噪后信号');基于小波消噪的雷达回波检测基于小波消噪的雷达回波检测,可以检测雷达回波的有无及其准确的位置二维小波变换(正和逆变换)复制内容到剪贴板 代码:close all;clear;clc;
signalw=1200;%信号宽度
m=120000; %数据采样点数
pfa=0.001;%虚警概率
dectectw=signalw/4;%滑窗宽度
a=wgn(1,m,13,50,'dbm','real');%噪声
b=gate(a,m,dectectw,pfa)%门限
signal=real(fmlin(signalw,0,0.25));%信号
%加高斯白噪声信号
mix=zeros(1,m);
signalpos=40000;
for l=signalpos:signalpos+signalw-1
mix(1,l)=signal(l-(signalpos-1),1);
end
mix=mix+a;%加高斯白噪声信号
%检测信号有无及位置
g=0;
for l=1:dectectw
g=g+mix(l)*(mix(l))';
end
g0=g;
for k=(dectectw+1):m
g=g+mix(k)*(mix(k))'-mix(k-dectectw)*(mix(k-dectectw))';
if (g>b)
over=1
index=k
break
end
end%检测信号有无及位置
pnoise=mean(abs(a).^2);
psignal=mean(abs(signal).^2);
snr=10*log10(psignal/pnoise) %信噪比
[mix1,c,l]=wden(mix,'rigrsure','s','sln',3,'db2');
[a1,c,l]=wden(a,'rigrsure','s','sln',3,'db2');
% figure(2)
% subplot(2,1,1)
% plot(a)
% subplot(2,1,2)
% plot(a1)
[signal1,c,l]=wden(signal,'rigrsure','s','sln',3,'db2');
% figure(3)
% subplot(2,1,1)
% plot(signal)
% subplot(2,1,2)
% plot(signal1)
%检测信号有无及位置
dectectw1=signalw*1/4;
b1=gate(a1,m,dectectw1,pfa)
g=0;
for l=1:dectectw1
g=g+mix1(l)*(mix1(l))';
end
g0=g;
for k=(dectectw1+1):m
g=g+mix1(k)*(mix1(k))'-mix1(k-dectectw1)*(mix1(k-dectectw1))';
if (g>b1)
over=1
index=k
break
end
end%检测信号有无及位置
pnoise1=(sum(abs(mix1).^2)-sum(abs(signal1).^2))/m;
psignal1=mean(abs(signal1).^2);
snr1=10*log10(psignal1/pnoise1) %信噪比
subplot(2,1,1)
plot(mix)
axis([0 60000 -4 4])
TITLE('消噪前信号')
str={['SNR=',num2str(snr),'dB']};
text(45000,3,str)
subplot(2,1,2)
plot(mix1)
axis([0 60000 -4 4])
TITLE('消噪后信号')
str={['SNR=',num2str(snr1),'dB']};
text(45000,2.5,str)二维小波变换(正和逆变换),用二维卷积实现的,其中有个子函数用于产生小波系数的(小波分解和小波重构的系数都有)!你自己也可以往里面加系数!二维小波变换(正和逆变换)复制内容到剪贴板 代码:function [varargout]=wavefilter(wname,type)
error(nargchk(1,2,nargin));
if(nargin==1 & nargout ~=4) | (nargin==2 & nargout~=2)
error('Invalid number of output arguments.');
end
if nargin==1 & ~ischar(wname)
error('WNAME must be a string.');
end
if nargin==2 & ~ischar(type)
error('TYPE must be a string.');
end
switch lower(wname)
case {'haar','db1'}
ld=[1 1]/sqrt(2); hd=[-1 1]/sqrt(2);
lr=ld; hr=-hd;
case 'db4'
ld=[-1.059740178499728e-002 3.288301166698295e-002 3.084138183598697e-002 -1.870348117188811e-001 ...
-2.798376941698385e-002 6.308807679295904e-001 7.148465705525415e-001 2.303778133088552e-001];
t=[0:7];
hd=ld; hd(end:-1:1)=cos(pi*t).*ld;
lr=ld; lr(end:-1:1)=ld;
hr=cos(pi*t).*ld;
case 'sym4'
ld=[-7.576571478927333e-002 -2.963552764599851e-002 4.976186676320155e-001 8.037387518059161e-001 ...
2.978577956052774e-001 -9.921954357684722e-002 -1.260396726203783e-002 3.222310060404270e-002];
t=[0:7];
hd=ld; hd(end:-1:1)=cos(pi*t).*ld;
lr=ld; lr(end:-1:1)=ld;
hr=cos(pi*t).*ld;
case 'bior6.8'
ld=[0 1.908831736481291e-003 -1.9142861290088767e-003 -1.699063986760234e-002 1.1934565279772926e-002 ...
4.973290349094079e-002 -7.726317316720414e-002 -9.405920349573646e-002 4.207962846098268e-001 ...
8.259229974584023e-001 4.207962846098268e-001 -9.405920349573646e-002 -7.726317316720414e-002 ...
4.973290349094079e-002 1.193456527972926e-002 -1.699063986760234e-002 -1.914286129088767e-003 ...
1.908831736481291e-003];
hd=[0 0 0 1.442628250562444e-002 -1.446750489679015e-002 -7.872200106262882e-002 4.036797903033992e-002 ...
4.178491091502746e-001 -7.589077294536542e-001 4.178491091502746e-001 4.036797903033992e-002 ...
-7.872200106262882e-002 -1.446750489679015e-002 1.442628250562444e-002 0 0 0 0];
t=[0:17];
lr=cos(pi*(t+1)).*hd;
hr=cos(pi*t).*ld;
case 'jpeg9.7'
ld=[0 0.02674875741080976 -0.01686411844287495 -0.07822326652898785 0.2668641184428723 ...
0.6029490182363579 0.2668641184428723 -0.07822326652898785 -0.01686411844287495 ...
0.02674875741080976];
hd=[0 -0.09127176311424948 0.05754352622849957 0.5912717631142470 -1.115087052456994 ...
0.5912717631142470 0.05754352622849957 -0.09127176311424948 0 0];
t=[0:9];
lr=cos(pi*(t+1)).*hd;
hr=cos(pi*t).*ld;
otherwise
error('Unrecongizable wavelet name (WNAME).');
end
if(nargin==1)
varargout(1:4)={ld,hd,lr,hr};
else
switch lower(type(1))
case 'd'
varargout={ld,hd};
case 'r'
varargout={lr,hr};
otherwise
error('Unrecongizable filter TYPE.');
end
end复制内容到剪贴板 代码:function [c,s]=wavefast(x,n,varargin)
error(nargchk(3,4,nargin));
if nargin==3
if ischar(varargin{1})
[lp,hp]=wavefilter(varargin{1},'d');
else
error('Missing wavelet name.');
end
else
lp=varargin{1}; hp=varargin{2};
end
fl=length(lp);sx=size(x);
if (ndims(x)~=2) | (min(sx)<2) | ~isreal(x) | ~isnumeric(x)
error('X must be a real ,numeric matric.');
end
if(ndims(lp)~=2) | ~ isreal(lp) | ~isnumeric(lp) | (ndims(hp) ~=2) | ~ isreal(hp) | ~isnumeric(hp) ...
| (fl~=length(hp)) | rem(fl,2)~=0
error(['LP and HP must be ever and equal length real numeric filter vector.']);
end
if ~isreal(n) | ~isnumeric(n) |(n<1) |(n>log2(max(sx)))
error(['N must be a real scalar between 1 and log2(max(size(X))).']);
end
c=[];s=sx;app=double(x);
for i=1:n
[app,keep]=symextend(app,fl);
rows=symconv(app,hp,'row',fl,keep);
coefs=symconv(rows,hp,'col',fl,keep);
c=[coefs(:)' c]; s=[size(coefs);s];
coefs=symconv(rows,lp,'col',fl,keep);
c=[coefs(:)' c];
rows=symconv(app,lp,'row',fl,keep);
coefs=symconv(rows,hp,'col',fl,keep);
c=[coefs(:)' c];
app=symconv(rows,lp,'col',fl,keep);
end
c=[app(:)' c]; s=[size(app);s];
function [y, keep]=symextend(x,fl)
keep=floor((fl+size(x)-1)/2);
y=padarray(x,[(fl-1) (fl-1)],'symmetric','both');
function y=symconv(x,h,type,fl,keep)
if strcmp(type, 'row')
y=conv2(x,h);
y=y(:,1:2:end);
y=y(:,fl/2+1:fl/2+keep(2));
else
y=conv2(x,h');
y=y(1:2:end,:);
y=y(fl/2+1:fl/2+keep(2),:);
end复制内容到剪贴板 代码:function [varargout]=waveback(c,s,varargin)
error(nargchk(3,5,nargin));
error(nargchk(1,2,nargout));
if(ndims(c) ~=2) | (size(c,1) ~=1)
error('C must be a row vector .');
end
if (ndims(s) ~=2) | ~isreal(s) | ~isnumeric(s) | (size(s,2) ~=2)
error('S must be a real,numeric two-column array.');
end
elements=prod(s,2);
if (length(c) <elements(end)) | ~(elements(1)+3*sum(elements(2:end-1))>=elements(end))
error(['[C S] must be a standard wavelet decomposition structure.']);
end
nmax=size(s,1)-2;
wname=varargin{1};filterchk=0;nchk=0;
switch nargin
case 3
if ischar(wname)
[lp,hp]=wavefilter(wname,'r');
n=nmax;
else
error('Undefined filter.');
end
if nargout~=1
error('Wrong number of output arguments.');
end
case 4
if ischar(wname)
[lp,hp]=wavefilter(wname,'r');
n=varargin{2};nchk=1;
else
lp=varargin{1};
hp=varargin{2};
filterchk=1;n=nmax;
if nargout ~=1
error('Wrong number of output arguments.');
end
end
case 5
lp=varargin{1};hp=varargin{2};filterchk=1;
n=varargin{3};nchk=1;
otherwise
error('Improper number of input arguments.');
end
fl=length(lp);
if filterchk
if (ndims(lp) ~=2) | ~isreal(lp) | ~isnueric(lp) |(ndims(hp) ~=2) | ~isreal(hp) ...
| ~isnumeric(hp) |(fl ~=length(hp)) | rem(fl,2) ~=0
error(['LP and HP must be even and equal length real,numeric filter vectors.']);
end
end
if nchk & (~isnumeric(n) | ~isreal(n))
error('N must be a real numeric.');
end
if(n~=nmax) & (nargout ~=2)
error('Not enough output arguments.');
end
nc=c;ns=s;nnmax=nmax;
for i=1:n
a=symconvup(wavecopy('a',nc,ns),lp,lp,fl,ns(3,:))+ ...
symconvup(wavecopy('h',nc,ns,nnmax),hp,lp,fl,ns(3,:))+ ...
symconvup(wavecopy('v',nc,ns,nnmax),lp,hp,fl,ns(3,:))+ ...
symconvup(wavecopy('d',nc,ns,nnmax),hp,hp,fl,ns(3,:));
nc=nc(4*prod(ns(1,:))+1:end);
nc=[a(:)' nc];
ns=ns(3:end,:);
ns=[ns(1,:);ns];
nnmax=size(ns,1)-2;
end
if nargout ==1
a=nc; nc=repmat(0,ns(1,:)); nc(:)=a;
end
varargout{1}=nc;
if nargout==2
varargout{2}=ns;
end
function z=symconvup(x,f1,f2,fln,keep)
y=zeros([2 1].*size(x));
y(1:2:end,:)=x;
y=conv2(y,f1');
z=zeros([1 2].*size(y));
z(:,1:2:end)=y;
z=conv2(z,f2);
z=z(fln-1:fln+keep(1)-2,fln-1:fln+keep(2)-2);二维小波变换(正和逆变换),用二维卷积实现的,其中有个子函数用于产生小波系数的(小波分解和小波重构的系数都有)!你自己也可以往里面加系数!复制内容到剪贴板 代码:function [varargout]=wavefilter(wname,type)
error(nargchk(1,2,nargin));
if(nargin==1 & nargout ~=4) | (nargin==2 & nargout~=2)
error('Invalid number of output arguments.');
end
if nargin==1 & ~ischar(wname)
error('WNAME must be a string.');
end
if nargin==2 & ~ischar(type)
error('TYPE must be a string.');
end
switch lower(wname)
case {'haar','db1'}
ld=[1 1]/sqrt(2); hd=[-1 1]/sqrt(2);
lr=ld; hr=-hd;
case 'db4'
ld=[-1.059740178499728e-002 3.288301166698295e-002 3.084138183598697e-002 -1.870348117188811e-001 ...
-2.798376941698385e-002 6.308807679295904e-001 7.148465705525415e-001 2.303778133088552e-001];
t=[0:7];
hd=ld; hd(end:-1:1)=cos(pi*t).*ld;
lr=ld; lr(end:-1:1)=ld;
hr=cos(pi*t).*ld;
case 'sym4'
ld=[-7.576571478927333e-002 -2.963552764599851e-002 4.976186676320155e-001 8.037387518059161e-001 ...
2.978577956052774e-001 -9.921954357684722e-002 -1.260396726203783e-002 3.222310060404270e-002];
t=[0:7];
hd=ld; hd(end:-1:1)=cos(pi*t).*ld;
lr=ld; lr(end:-1:1)=ld;
hr=cos(pi*t).*ld;
case 'bior6.8'
ld=[0 1.908831736481291e-003 -1.9142861290088767e-003 -1.699063986760234e-002 1.1934565279772926e-002 ...
4.973290349094079e-002 -7.726317316720414e-002 -9.405920349573646e-002 4.207962846098268e-001 ...
8.259229974584023e-001 4.207962846098268e-001 -9.405920349573646e-002 -7.726317316720414e-002 ...
4.973290349094079e-002 1.193456527972926e-002 -1.699063986760234e-002 -1.914286129088767e-003 ...
1.908831736481291e-003];
hd=[0 0 0 1.442628250562444e-002 -1.446750489679015e-002 -7.872200106262882e-002 4.036797903033992e-002 ...
4.178491091502746e-001 -7.589077294536542e-001 4.178491091502746e-001 4.036797903033992e-002 ...
-7.872200106262882e-002 -1.446750489679015e-002 1.442628250562444e-002 0 0 0 0];
t=[0:17];
lr=cos(pi*(t+1)).*hd;
hr=cos(pi*t).*ld;
case 'jpeg9.7'
ld=[0 0.02674875741080976 -0.01686411844287495 -0.07822326652898785 0.2668641184428723 ...
0.6029490182363579 0.2668641184428723 -0.07822326652898785 -0.01686411844287495 ...
0.02674875741080976];
hd=[0 -0.09127176311424948 0.05754352622849957 0.5912717631142470 -1.115087052456994 ...
0.5912717631142470 0.05754352622849957 -0.09127176311424948 0 0];
t=[0:9];
lr=cos(pi*(t+1)).*hd;
hr=cos(pi*t).*ld;
otherwise
error('Unrecongizable wavelet name (WNAME).');
end
if(nargin==1)
varargout(1:4)={ld,hd,lr,hr};
else
switch lower(type(1))
case 'd'
varargout={ld,hd};
case 'r'
varargout={lr,hr};
otherwise
error('Unrecongizable filter TYPE.');
end
end复制内容到剪贴板 代码:function [c,s]=wavefast(x,n,varargin)
error(nargchk(3,4,nargin));
if nargin==3
if ischar(varargin{1})
[lp,hp]=wavefilter(varargin{1},'d');
else
error('Missing wavelet name.');
end
else
lp=varargin{1}; hp=varargin{2};
end
fl=length(lp);sx=size(x);
if (ndims(x)~=2) | (min(sx)<2) | ~isreal(x) | ~isnumeric(x)
error('X must be a real ,numeric matric.');
end
if(ndims(lp)~=2) | ~ isreal(lp) | ~isnumeric(lp) | (ndims(hp) ~=2) | ~ isreal(hp) | ~isnumeric(hp) ...
| (fl~=length(hp)) | rem(fl,2)~=0
error(['LP and HP must be ever and equal length real numeric filter vector.']);
end
if ~isreal(n) | ~isnumeric(n) |(n<1) |(n>log2(max(sx)))
error(['N must be a real scalar between 1 and log2(max(size(X))).']);
end
c=[];s=sx;app=double(x);
for i=1:n
[app,keep]=symextend(app,fl);
rows=symconv(app,hp,'row',fl,keep);
coefs=symconv(rows,hp,'col',fl,keep);
c=[coefs(:)' c]; s=[size(coefs);s];
coefs=symconv(rows,lp,'col',fl,keep);
c=[coefs(:)' c];
rows=symconv(app,lp,'row',fl,keep);
coefs=symconv(rows,hp,'col',fl,keep);
c=[coefs(:)' c];
app=symconv(rows,lp,'col',fl,keep);
end
c=[app(:)' c]; s=[size(app);s];
function [y, keep]=symextend(x,fl)
keep=floor((fl+size(x)-1)/2);
y=padarray(x,[(fl-1) (fl-1)],'symmetric','both');
function y=symconv(x,h,type,fl,keep)
if strcmp(type, 'row')
y=conv2(x,h);
y=y(:,1:2:end);
y=y(:,fl/2+1:fl/2+keep(2));
else
y=conv2(x,h');
y=y(1:2:end,:);
y=y(fl/2+1:fl/2+keep(2),:);
end复制内容到剪贴板 代码:function [varargout]=waveback(c,s,varargin)
error(nargchk(3,5,nargin));
error(nargchk(1,2,nargout));
if(ndims(c) ~=2) | (size(c,1) ~=1)
error('C must be a row vector .');
end
if (ndims(s) ~=2) | ~isreal(s) | ~isnumeric(s) | (size(s,2) ~=2)
error('S must be a real,numeric two-column array.');
end
elements=prod(s,2);
if (length(c) <elements(end)) | ~(elements(1)+3*sum(elements(2:end-1))>=elements(end))
error(['[C S] must be a standard wavelet decomposition structure.']);
end
nmax=size(s,1)-2;
wname=varargin{1};filterchk=0;nchk=0;
switch nargin
case 3
if ischar(wname)
[lp,hp]=wavefilter(wname,'r');
n=nmax;
else
error('Undefined filter.');
end
if nargout~=1
error('Wrong number of output arguments.');
end
case 4
if ischar(wname)
[lp,hp]=wavefilter(wname,'r');
n=varargin{2};nchk=1;
else
lp=varargin{1};
hp=varargin{2};
filterchk=1;n=nmax;
if nargout ~=1
error('Wrong number of output arguments.');
end
end
case 5
lp=varargin{1};hp=varargin{2};filterchk=1;
n=varargin{3};nchk=1;
otherwise
error('Improper number of input arguments.');
end
fl=length(lp);
if filterchk
if (ndims(lp) ~=2) | ~isreal(lp) | ~isnueric(lp) |(ndims(hp) ~=2) | ~isreal(hp) ...
| ~isnumeric(hp) |(fl ~=length(hp)) | rem(fl,2) ~=0
error(['LP and HP must be even and equal length real,numeric filter vectors.']);
end
end
if nchk & (~isnumeric(n) | ~isreal(n))
error('N must be a real numeric.');
end
if(n~=nmax) & (nargout ~=2)
error('Not enough output arguments.');
end
nc=c;ns=s;nnmax=nmax;
for i=1:n
a=symconvup(wavecopy('a',nc,ns),lp,lp,fl,ns(3,:))+ ...
symconvup(wavecopy('h',nc,ns,nnmax),hp,lp,fl,ns(3,:))+ ...
symconvup(wavecopy('v',nc,ns,nnmax),lp,hp,fl,ns(3,:))+ ...
symconvup(wavecopy('d',nc,ns,nnmax),hp,hp,fl,ns(3,:));
nc=nc(4*prod(ns(1,:))+1:end);
nc=[a(:)' nc];
ns=ns(3:end,:);
ns=[ns(1,:);ns];
nnmax=size(ns,1)-2;
end
if nargout ==1
a=nc; nc=repmat(0,ns(1,:)); nc(:)=a;
end
varargout{1}=nc;
if nargout==2
varargout{2}=ns;
end
function z=symconvup(x,f1,f2,fln,keep)
y=zeros([2 1].*size(x));
y(1:2:end,:)=x;
y=conv2(y,f1');
z=zeros([1 2].*size(y));
z(:,1:2:end)=y;
z=conv2(z,f2);
z=z(fln-1:fln+keep(1)-2,fln-1:fln+keep(2)-2);
二维小波变换(正和逆变换) 二维小波变换(正和逆变换),用二维卷积实现的,其中有个子函数用于产生小波系数的(小波分解和小波重构的系数都有)!你自己也可以往里面加系数!复制内容到剪贴板 代码:function [varargout]=wavefilter(wname,type)
error(nargchk(1,2,nargin));
if(nargin==1 & nargout ~=4) | (nargin==2 & nargout~=2)
error('Invalid number of output arguments.');
end
if nargin==1 & ~ischar(wname)
error('WNAME must be a string.');
end
if nargin==2 & ~ischar(type)
error('TYPE must be a string.');
end
switch lower(wname)
case {'haar','db1'}
ld=[1 1]/sqrt(2); hd=[-1 1]/sqrt(2);
lr=ld; hr=-hd;
case 'db4'
ld=[-1.059740178499728e-002 3.288301166698295e-002 3.084138183598697e-002 -1.870348117188811e-001 ...
-2.798376941698385e-002 6.308807679295904e-001 7.148465705525415e-001 2.303778133088552e-001];
t=[0:7];
hd=ld; hd(end:-1:1)=cos(pi*t).*ld;
lr=ld; lr(end:-1:1)=ld;
hr=cos(pi*t).*ld;
case 'sym4'
ld=[-7.576571478927333e-002 -2.963552764599851e-002 4.976186676320155e-001 8.037387518059161e-001 ...
2.978577956052774e-001 -9.921954357684722e-002 -1.260396726203783e-002 3.222310060404270e-002];
t=[0:7];
hd=ld; hd(end:-1:1)=cos(pi*t).*ld;
lr=ld; lr(end:-1:1)=ld;
hr=cos(pi*t).*ld;
case 'bior6.8'
ld=[0 1.908831736481291e-003 -1.9142861290088767e-003 -1.699063986760234e-002 1.1934565279772926e-002 ...
4.973290349094079e-002 -7.726317316720414e-002 -9.405920349573646e-002 4.207962846098268e-001 ...
8.259229974584023e-001 4.207962846098268e-001 -9.405920349573646e-002 -7.726317316720414e-002 ...
4.973290349094079e-002 1.193456527972926e-002 -1.699063986760234e-002 -1.914286129088767e-003 ...
1.908831736481291e-003];
hd=[0 0 0 1.442628250562444e-002 -1.446750489679015e-002 -7.872200106262882e-002 4.036797903033992e-002 ...
4.178491091502746e-001 -7.589077294536542e-001 4.178491091502746e-001 4.036797903033992e-002 ...
-7.872200106262882e-002 -1.446750489679015e-002 1.442628250562444e-002 0 0 0 0];
t=[0:17];
lr=cos(pi*(t+1)).*hd;
hr=cos(pi*t).*ld;
case 'jpeg9.7'
ld=[0 0.02674875741080976 -0.01686411844287495 -0.07822326652898785 0.2668641184428723 ...
0.6029490182363579 0.2668641184428723 -0.07822326652898785 -0.01686411844287495 ...
0.02674875741080976];
hd=[0 -0.09127176311424948 0.05754352622849957 0.5912717631142470 -1.115087052456994 ...
0.5912717631142470 0.05754352622849957 -0.09127176311424948 0 0];
t=[0:9];
lr=cos(pi*(t+1)).*hd;
hr=cos(pi*t).*ld;
otherwise
error('Unrecongizable wavelet name (WNAME).');
end
if(nargin==1)
varargout(1:4)={ld,hd,lr,hr};
else
switch lower(type(1))
case 'd'
varargout={ld,hd};
case 'r'
varargout={lr,hr};
otherwise
error('Unrecongizable filter TYPE.');
end
end复制内容到剪贴板 代码:function [c,s]=wavefast(x,n,varargin)
error(nargchk(3,4,nargin));
if nargin==3
if ischar(varargin{1})
[lp,hp]=wavefilter(varargin{1},'d');
else
error('Missing wavelet name.');
end
else
lp=varargin{1}; hp=varargin{2};
end
fl=length(lp);sx=size(x);
if (ndims(x)~=2) | (min(sx)<2) | ~isreal(x) | ~isnumeric(x)
error('X must be a real ,numeric matric.');
end
if(ndims(lp)~=2) | ~ isreal(lp) | ~isnumeric(lp) | (ndims(hp) ~=2) | ~ isreal(hp) | ~isnumeric(hp) ...
| (fl~=length(hp)) | rem(fl,2)~=0
error(['LP and HP must be ever and equal length real numeric filter vector.']);
end
if ~isreal(n) | ~isnumeric(n) |(n<1) |(n>log2(max(sx)))
error(['N must be a real scalar between 1 and log2(max(size(X))).']);
end
c=[];s=sx;app=double(x);
for i=1:n
[app,keep]=symextend(app,fl);
rows=symconv(app,hp,'row',fl,keep);
coefs=symconv(rows,hp,'col',fl,keep);
c=[coefs(:)' c]; s=[size(coefs);s];
coefs=symconv(rows,lp,'col',fl,keep);
c=[coefs(:)' c];
rows=symconv(app,lp,'row',fl,keep);
coefs=symconv(rows,hp,'col',fl,keep);
c=[coefs(:)' c];
app=symconv(rows,lp,'col',fl,keep);
end
c=[app(:)' c]; s=[size(app);s];
function [y, keep]=symextend(x,fl)
keep=floor((fl+size(x)-1)/2);
y=padarray(x,[(fl-1) (fl-1)],'symmetric','both');
function y=symconv(x,h,type,fl,keep)
if strcmp(type, 'row')
y=conv2(x,h);
y=y(:,1:2:end);
y=y(:,fl/2+1:fl/2+keep(2));
else
y=conv2(x,h');
y=y(1:2:end,:);
y=y(fl/2+1:fl/2+keep(2),:);
end复制内容到剪贴板 代码:function [varargout]=waveback(c,s,varargin)
error(nargchk(3,5,nargin));
error(nargchk(1,2,nargout));
if(ndims(c) ~=2) | (size(c,1) ~=1)
error('C must be a row vector .');
end
if (ndims(s) ~=2) | ~isreal(s) | ~isnumeric(s) | (size(s,2) ~=2)
error('S must be a real,numeric two-column array.');
end
elements=prod(s,2);
if (length(c) <elements(end)) | ~(elements(1)+3*sum(elements(2:end-1))>=elements(end))
error(['[C S] must be a standard wavelet decomposition structure.']);
end
nmax=size(s,1)-2;
wname=varargin{1};filterchk=0;nchk=0;
switch nargin
case 3
if ischar(wname)
[lp,hp]=wavefilter(wname,'r');
n=nmax;
else
error('Undefined filter.');
end
if nargout~=1
error('Wrong number of output arguments.');
end
case 4
if ischar(wname)
[lp,hp]=wavefilter(wname,'r');
n=varargin{2};nchk=1;
else
lp=varargin{1};
hp=varargin{2};
filterchk=1;n=nmax;
if nargout ~=1
error('Wrong number of output arguments.');
end
end
case 5
lp=varargin{1};hp=varargin{2};filterchk=1;
n=varargin{3};nchk=1;
otherwise
error('Improper number of input arguments.');
end
fl=length(lp);
if filterchk
if (ndims(lp) ~=2) | ~isreal(lp) | ~isnueric(lp) |(ndims(hp) ~=2) | ~isreal(hp) ...
| ~isnumeric(hp) |(fl ~=length(hp)) | rem(fl,2) ~=0
error(['LP and HP must be even and equal length real,numeric filter vectors.']);
end
end
if nchk & (~isnumeric(n) | ~isreal(n))
error('N must be a real numeric.');
end
if(n~=nmax) & (nargout ~=2)
error('Not enough output arguments.');
end
nc=c;ns=s;nnmax=nmax;
for i=1:n
a=symconvup(wavecopy('a',nc,ns),lp,lp,fl,ns(3,:))+ ...
symconvup(wavecopy('h',nc,ns,nnmax),hp,lp,fl,ns(3,:))+ ...
symconvup(wavecopy('v',nc,ns,nnmax),lp,hp,fl,ns(3,:))+ ...
symconvup(wavecopy('d',nc,ns,nnmax),hp,hp,fl,ns(3,:));
nc=nc(4*prod(ns(1,:))+1:end);
nc=[a(:)' nc];
ns=ns(3:end,:);
ns=[ns(1,:);ns];
nnmax=size(ns,1)-2;
end
if nargout ==1
a=nc; nc=repmat(0,ns(1,:)); nc(:)=a;
end
varargout{1}=nc;
if nargout==2
varargout{2}=ns;
end
function z=symconvup(x,f1,f2,fln,keep)
y=zeros([2 1].*size(x));
y(1:2:end,:)=x;
y=conv2(y,f1');
z=zeros([1 2].*size(y));
z(:,1:2:end)=y;
z=conv2(z,f2);
z=z(fln-1:fln+keep(1)-2,fln-1:fln+keep(2)-2);第二代小波变换源码复制内容到剪贴板代码:%%第二代小波变换源码
%% 此程序用提升法实现第二代小波变换
%% 我用的是非整数阶小波变换
%% 采用时域实现,步骤先列后行
%% 正变换:分裂,预测,更新;
%% 反变换:更新,预测,合并
%% 只做一层(可以多层,而且每层的预测和更新方程不同)
clear;clc;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 1.调原始图像矩阵
load wbarb; % 下载图像
f=X; % 原始图像
% f=[0 0 0 0 0 0 0 0 ;...
% 0 0 0 1 1 0 0 0 ;...
% 0 0 2 4 4 2 0 0 ;...
% 0 1 4 8 8 4 1 0 ;...
% 0 1 4 8 8 4 1 0 ;...
% 0 0 2 4 4 2 0 0 ;...
% 0 0 0 1 1 0 0 0 ;...
% 0 0 0 0 0 0 0 0 ;]; % 原始图像矩阵
N=length(f); % 图像维数
T=N/2; % 子图像维数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%正变换%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 1.列变换
% A.分裂(奇偶分开)
f1=f([1:2:N-1],:); % 奇数
f2=f([2:2:N],:); % 偶数
% f1(:,T+1)=f1(:,1); % 补列
% f2(T+1,:)=f2(1,:); % 补行
% B.预测
for i_hc=1:T;
high_frequency_column(i_hc,:)=f1(i_hc,:)-f2(i_hc,:);
end;
% high_frequency_column(T+1,:)=high_frequency_column(1,:); % 补行
% C.更新
for i_lc=1:T;
low_frequency_column(i_lc,:)=f2(i_lc,:)+1/2*high_frequency_column(i_lc,:);
end;
% D.合并
f_column([1:1:T],:)=low_frequency_column([1:T],:);
f_column([T+1:1:N],:)=high_frequency_column([1:T],:);
figure(1)
colormap(map);
image(f);
figure(2)
colormap(map);
image(f_column);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 2.行变换
% A.分裂(奇偶分开)
f1=f_column(:,[1:2:N-1]); % 奇数
f2=f_column(:,[2:2:N]); % 偶数
% f2(:,T+1)=f2(:,1); % 补行
% B.预测
for i_hr=1:T;
high_frequency_row(:,i_hr)=f1(:,i_hr)-f2(:,i_hr);
end;
% high_frequency_row(:,T+1)=high_frequency_row(:,1); % 补行
% C.更新
for i_lr=1:T;
low_frequency_row(:,i_lr)=f2(:,i_lr)+1/2*high_frequency_row(:,i_lr);
end;
% D.合并
f_row(:,[1:1:T])=low_frequency_row(:,[1:T]);
f_row(:,[T+1:1:N])=high_frequency_row(:,[1:T]);
figure(3)
colormap(map);
image(f_row);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%反变换%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 1.行变换
% A.提取(低频高频分开)
f1=f_row(:,[T+1:1:N]); % 奇数
f2=f_row(:,[1:1:T]); % 偶数
% f2(:,T+1)=f2(:,1); % 补行
% B.更新
for i_lr=1:T;
low_frequency_row(:,i_lr)=f2(:,i_lr)-1/2*f1(:,i_lr);
end;
% C.预测
for i_hr=1:T;
high_frequency_row(:,i_hr)=f1(:,i_hr)+low_frequency_row(:,i_hr);
end;
% high_frequency_row(:,T+1)=high_frequency_row(:,1); % 补行
% D.合并(奇偶分开合并)
f_row(:,[2:2:N])=low_frequency_row(:,[1:T]);
f_row(:,[1:2:N-1])=high_frequency_row(:,[1:T]);
figure(4)
colormap(map);
image(f_row);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 2.列变换
% A.提取(低频高频分开)
f1=f_row([T+1:1:N],:); % 奇数
f2=f_row([1:1:T],:); % 偶数
% f1(:,T+1)=f1(:,1); % 补列
% f2(T+1,:)=f2(1,:); % 补行
% B.更新
for i_lc=1:T;
low_frequency_column(i_lc,:)=f2(i_lc,:)-1/2*f1(i_lc,:);
end;
% C.预测
for i_hc=1:T;
high_frequency_column(i_hc,:)=f1(i_hc,:)+low_frequency_column(i_hc,:);
end;
% high_frequency_column(T+1,:)=high_frequency_column(1,:); % 补行
% D.合并(奇偶分开合并)
f_column([2:2:N],:)=low_frequency_column([1:T],:);
f_column([1:2:N-1],:)=high_frequency_column([1:T],:);
figure(5)
colormap(map);
image(f_column);利用小波变换实现对电能质量检测的算法实现复制内容到剪贴板代码:N=10000;
s=zeros(1,N);
for n=1:N
if n<0.4*N||n>0.8*N
s(n)=31.1*sin(2*pi*50/10000*n);
else
s(n)=22.5*sin(2*pi*50/10000*n);
end
end
l=length(s);
[c,l]=wavedec(s,6,'db5'); %用db5小波分解信号到第六层
subplot(8,1,1);
plot(s);
title('用db5小波分解六层:s=a6+d6+d5+d4+d3+d2+d1');
Ylabel('s');%对分解结构【c,l】中第六层低频部分进行重构
a6=wrcoef('a',c,l,'db5',6);
subplot(8,1,2);
plot(a6);
Ylabel('a6');%对分解结构【c,l】中各层高频部分进行重构
for i=1:6
decmp=wrcoef('d',c,l,'db5',7-i);
subplot(8,1,i+2);
plot(decmp);
Ylabel(['d',num2str(7-i)]);
end
%-----------------------------------------------------------
rec=zeros(1,300);
rect=zeros(1,300);
ke=1;
u=0;
d1=wrcoef('d',c,l,'db5',1);
figure(2);
plot(d1);
si=0;
N1=0;
N0=0;
sce=0;
for n=20:N-30
rect(ke)=s(n);
ke=ke+1;
if(ke>=301)
if(si==2)
rec=rect;
u=2;
end;
si=0;
ke=1;
end;
if(d1(n)>0.01) % the condition of abnormal append.
N1=n;
if(N0==0)
N0=n;
si=si+1;
end;
if(N1>N0+30)
Nlen=N1-N0;
Tab=Nlen/10000;
end;
end;
if(si==1)
for k=N0:N0+99 %testing of 1/4 period signals to
sce=sce+s(k)*s(k)/10000;
end;
re=sqrt(sce*200) %re indicate the pike value of .
sce=0;
si=si+1;
end;
end;
Nlen
N0
n=1:300;
figure(3)
plot(n,rec);
GMT+8, 2024-11-25 17:37 , Processed in 0.053149 second(s), 17 queries , Gzip On.
Powered by Discuz! X3.4
Copyright © 2001-2021, Tencent Cloud.